
Journal of  Statistical Physics, VoL 2, No. 3, 1970 

A Kinetic Theory of Diffusely 
Reflecting Br0wnian Particles 
W. G. N. Slinn, 1 S. F. Shen, ~ and R. M. Mazo ~ 

Received March 23, 1970 

An analysis is made of the motion of a spherical Brownian particle whose surface can 
diffusely reflect the molecules of an equilibrium host gas. The analysis is based on 
Newton's second law and a limiting form of Markov's method. It is shown, both for 
specular and diffuse reflections, that equipartition of energy is a consequence of the 
dynamics and randomness of the motion. In addition, it is demonstrated that the 
diffusion coefficient can depend on the temperature of the particIe. The entire analysis 
is restricted to the case for which the Knudsen number of the particle is large compared 
to unity. 
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t .  I N T R O D U C T I O N  

Recently,  Har r i s  <1) wrote  tha t  "a  r igorous  dynamica l  theory  for  the Brownian  m o t i o n  
o f  assemblies o f  uns t ruc tured  par t ic les  has been es tabl ished within the f r amework  o f  
statist ical  mechanics ."  In  suppor t  of  this s ta tement ,  we would  like to add  to  his referen- 
ces the  thorough  s tudy by Green  ~ and  a recent r epor t  by  Mazo .  <z> Har r i s  proceeds  to  
analyze the m o t i o n  o f  s t ructured Brownian  part icles  (B particles).  

In  this report ,  we shall analyze the mo t ion  o f  s t ructured B par t ic les  whose radius  
is small  compared  with the mean  free pa th  for  the molecules o f  the equi l ib r ium hos t  
gas. Actua l ly ,  the analysis  arose f rom the recent s tudy by  Shen and  Slinn <4,B) o f  
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Brownian motion in a nonuniform gas, but in this paper the results will be illustrated 
only for the case of a uniform gas. The particular structure of the B particle that will 
be considered differs from the structure studied by Harris in that we consider spherical 
particles whose surfaces can diffusely reflect the gas molecules. The gas itself is assumed 
to be composed of structureless molecules. 

An outline of the present analysis is the following. First, Markov's method is 
slightly extended and then illustrated for a problem similar to the classic, rotary 
Brownian motion problem of Uhlenbeck and Goudsmit. 16) After a preliminary study 
is made of the stochastic force on a stationary, specularly reflecting B particle, we 
proceed to remove these restrictions. Finally, some consequences of the new results 
are discussed. 

2. M A R K O V ' S  M E T H O D  

Consider a B particle of mass M which is moving with velocity V through a 
uniform gas. It is assumed that Newton's second law adequately describes the motion 
of the particle. If the total force on the B particle is separated into a continuous drag 
force --M/~V, where/3 is the drag coefficient per unit mass, and a stochastic force 
MA, which has zero mean, then Newton's second law becomes the Langevin equation: 

dV/dt = --/?V q- A(t) O) 

To analyze the motion of the B particle, it is necessary to obtain a statistical description 
of the stochastic acceleration A. 

Actually, it is more useful to determine the probability density function (pdf) 
of the change in velocity 

B = A(s)  ds (2) 

incurred during A t by the B particle from random collisions with the gas molecules. 
Chandrasekhar ~71 postulated that the pdf  for B is 

W(B) = (4zrkTfl At/M)-Z/e exp{--M I B 12/4kT~ At} (3) 

where k is Boltzmann's constant and T is the absolute temperature of the equilibrium 
environment. Earlier, Green ~2) used Markov's and other methods to derive Eq. (3) 
for structureless B particles with large Knudsen number. In the next section, we will 
present our own, independent derivation which differs in detail from Green's and which 
leads to the method that we shall use for structured B particles. 

Rather than seek the pdf, W(B), for the change in velocity, it is more convenient 
to evaluate the closely related pdf  for the total momentum P delivered during At to 
the B particle. If  gas molecule j delivers momentum p~ to the particle during At, then 

N 

e = 2 p: (4) 
j = l  
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where N is the (unknown) total number of molecules that hit the B particle during At. 
Each p~ depends on variables or "coordinates" q~- such as the molecule's speed ~, its 
initial location, and its direction of travel. For a dilute gas in equilibrium, the pdf's 
~rj(qj) of these coordinates are known. 

Markov's result provides a method for calculating the pdf  for P from knowledge 
of  ~-j(qj), provided that the p~ are independent, random variables. This condition 
restricts our analysis to the case for which the movements of the gas molecules in 
the neighborhood of  the particle are independent of  one another. That is, it is required 
that the Knudsen number Kn (the ratio of  the mean free path for the gas molecules, 
/~, to the radius of the particle a) be large compared to unity. Markov's result is 

where 

W(P) = [1/(27r) z] f dp AN(P) exp{--ip �9 P) (5) 

AN(O) = ~11 f dqj -rj(qj) exp{i0 " p~(qj)) (6) 

Except for the presence in Eq. (6) ofp(q) rather than q alone, this is almost the familiar 
result {s) that the characteristic function for the sum of independent, random variables 
is the product of the characteristic functions of the elements of the sum. 

Equation (6) will be modified slightly in a manner which was indicated by 
Chandrasekhar. <7} For the case when qj and ~'~- are the same for all j, then Eq. (6) 
becomes 

AN(fl ) ~ - [ f  dq ~-(q)exp(io" p}]N (7) 

If  N is large enough, then, using the definition of the exponential 

e=lim(lh_~ + h )  h 

and using 

then Eq. (7) becomes 

where 

f aq ~(q) --- 1 

AN(p) = exp{--C(0)) 

C(p) : N f dq ~'(q)[1 -- exp{ip �9 p)] 

(8) 

(9) 

Equation (9) and a power series expansion of C(0) in p will be utilized a number of 
times in the subsequent analysis. 

Before continuing with the Brownian motion problem, it may be useful to  illus- 
trate the use of Markov's method by calculating the pdf for the number of molecules 
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that, during At, strike one side of an area element AA which is immersed in a dilute 
gas in equilibrium. Let the total number of molecules that hit the plate during At 
be H. If  hj takes the numerical value 1 if molecule j hits the plate and 0 if it does not, 
then 

N 

H = Z h~- (10) 
j = l  

where Nis the total number of molecules that could conceivably hit the plate during dt .  
To learn something about N, we remark that the velocity distribution function 

for the molecules of the gas will be taken to be Maxwellian. This admits the possibility 
that molecules have extremely large speeds, and thereby it is tempting to conclude 
that any molecule in the hemisphere of radius R ~ o~ above the plate could hit AA 
during At. Thus, it is suggested that 

1 �9 7rR 3) (11) N = ~(x ~ >~ 1 

where ~ is the mean number density of gas molecules. On the other hand, a more 
realistic estimate of N incorporates the duration of the time interval, At. Thus, N is 
of the order of ~ AA At, where the mean thermal speed of the molecules is 

= (8kTfirm)Z/2 (12) 

in which m is the mass of a molecule of the gas. Equation (11) will be used in the sequel, 
but it is recognized that the use of the asymptotic expression, Eq. (8), for AN(p ) implies 
a condition on At. This condition will be seen below. 

The coordinates qj upon which each hj depends are the molecule's speed ~, 
its initial location r = (r, 0, co), and its direction of travel. If the fluid is in equilibrium, 
then, by the theorem of detailed balance/9) collisions between molecules need not be 
considered. The pdf for these coordinates is taken to be the product of the density 
functions: 

r(q) = 4,r ____ ~2 exp{_v~2} "47rR~7-6" 4rr (13) 

where ), = m/2kT. Thus, the speeds are assumed to have a Maxwellian distribution 
and the initial location (within volume element dV) and direction of travel (within 
solid angle ,Q) are assumed to be random. The statistical distribution of the coordinates 
is the same for all molecules, 

The pertinent range of these coordinates can be determined from the following 
arguments. Molecule j, with speed ~:, could hit AA during At only if it is within the 
distance ~ At of the plate. In addition, its direction of travel must be within the solid 
angle AO = AA cos O/r 2 subtended at r by the plate. 

Substituting Eqs. (11) and (13) into Eq. (9) leads to 

r C(p) = ~ d~ ~2 exp{_v~2} dr r 2 
0 - - 0  

r _ • dO sin 0 -o dt~ cos o/~dg2[ 1 exp{ip}] (14) 
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Thus, almost trivially, 

C(p) = M[1 -- exp{ip}] (is) 

where M = ~ A A  At~4. Finally, substituting Eq. (15) into (8) and the result into 
Eq. (5) gives 

W(H) ~ M/~e-2~/M ! (16) 

Equation (16) is the familiar result a~ that the number of molecules that hit an 
area element during At has a Poisson distribution with mean M. It should be noticed 
that the more general result, that this number has a Bernoulli distribution, was not 
obtained. The reason for this was our use of the asymptotic formula for AN(O). 
However, it is well known that when the number of events is sufficiently large, that is, 
when 2~ and therefore when At is sufficiently large, then an adequate approximation 
to the Bernoulli distribution is the Poisson distribution. Furthermore, if M is large, 
then an acceptable approximation to the Poisson (or Bernoulli) distribution is the 
Gaussian distribution. This can be obtained either by expanding Eq. (16) or by 
expanding Eq. (9) in a power series in p and integrating term by term. The latter 
method will be explored further in the next section. 

3. S T A T I O N A R Y  P A R T I C L E - - S P E C U L A R  R E F L E C T I O N S  

Consider a spherical B particle of radius a that is immersed in a dilute gas which 
is in thermodynamic equilibrium. No approximation is involved if the total force on 
the particle is divided into two parts or, for that matter, any other number. Therefore, 
Langevin's equation is exact provided A(t) is correct. In this section, the study of 
A(t) will be simplified through the assumption that the stochastic force on a moving B 
particle is the same as the stochastic force on a stationary particle. In addition, it 
will be assumed that the gas molecules reflect specularly from the particle's surface. 
Both of these restrictions will be removed in the next section. 

The method that will be used in this section to calculate the pdf of the total 
momentum transfer to a stationary B particle is, first, to calculate the momentum 
transferred during At  to an area element AA of the sphere and then to sum the contri- 
butions over the entire sphere. Consider the area element on the sphere 
AA = a 2 sin O dO d~, where (a, O, ~b) are the usual spherical coordinates of a point 
on the surface of the sphere, with respect to the origin of coordinates (X, Y, Z) at 
the center of the sphere. Choose a second coordinate system (x, y, z) at the area 
element with basis vectors (k, i, ~) = (~R, r r Thus, f~ is perpendicular to the area 
element. The momentum delivered during At to the area element AA is given by 
Eq. (4). If  the molecular collisions are specular, then (by definition) 

pj = 2ms e cos 0(--f~) (17) 

where 0 is the polar angle measured from the z-axis of a point (r, 0, co) within 
the gas. 
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Substituting Eq. (17) into (9) and using Eq. (13) for the pdf for the coordinates, 
there results 

C(p) : ~ dr r 2 dO sin 0 deo d~: 
~ 0  ~ 0  0 r /A t  

AA cos 0 ~:2 
• r~ exp{--y~:~}[1 -- exp{--ip - [~ 2m~: cos 0}] (18) 

Evaluating these integrals leads to 

C(O) = im(rr/y) ~/2 Mp~ g(--rnp~y -1/2) (19) 

where 

g(t) = exp(-- t 2) erfc(-- it) (20) 

is the error function with complex argument, m) Now, substituting Eq. (19) into (5) 
and integrating over p~ and p~ gives 

1 
8(P,) 8(Pv) f dpz exp(--ip~P~) exp{--im(rr/y) 1/2 Ugp~g(--mp,y-i/2)} (21) w(e)  = 2-7, 

where the 3's are Dirac delta functions. Equation (21) confirms the obvious fact that, 
for a stationary area element, there is no momentum transfer to the area in its own 
plane. 

Unfortunately, we have not been able to perform the remaining integration in 
Eq. (21). Expanding g(t) of Eq. (20) in the uniformly converging power series (az) 

g(t) = ~ (it)~/F(1 4- n/Z) (22) 
n=O 

and keeping only the first two terms leads to 

W(P) -- 8(P~) 8(PO (Pz -- t*) 2 
(2rre2) z/z e x p - - I  2~ -~ t (23) 

where/, = - - ~ k T A t  AA and a 2 = 7r~r(m&. Thus, to this approximation, the distri- 
bution is normal with mean/z and variance a 2. 

This procedure of expanding the characteristic function and integrating term 
by term is a standard method for generating the Edgeworth (12) or Bruns-Charlier (1~) 
series. The conditions for it to yield an acceptable result are essentially those required 
for the central-limit theorem to be applicable. Green (a) has investigated this step in 
considerable detail. The general result is that the normal distribution, Eq. (23), is 
adequate, provided that the next term in the expansion, which is of order ~-a/2, 
can be ignored compared to the term that has been retained. Thus, we require that 
M*n >~ 1. 

The total momentum, say M, delivered to the sphere is given by 

L 

M = Z P, (24) 
J = l  
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where P~ is the momentum delivered to area element j and L = 4rra~/AA. As was 
mentioned earlier, the P~ are taken to be independent, random variables. Instead of 
attempting to find the distribution of the total M, it is convenient to study a component 
of M along some arbitrary direction Z. Thus, consider 

L 

Mz = ~ P~ cos ~j (25) 
j = l  

The components of M along mutually orthogonal directions X and Y will have distri- 
butions identical to that of Mz.  

From Eq. (23), each P5 cos ~b. will have a normal distribution with mean/xj cos q~. 
and variance crj 2 cos 2 ~ . ,  where 

~r~ 2 = (~r/4)fi~ At (m~) 2 AA~ and F~ = fikT At AAj 

To calculate W(Mz), it is necessary to evaluate, first, 

AL(p) = exp ip Y, tz~ cos ~- -- ~- ~rj 2 cos ~ ~ (26) 
j = l  j = l  

In the limit as L becomes large, the summations in Eq. (26) may be changed to integrals. 
Evaluating these and substituting the result into Eq. (5) results in 

W(Mz) = (27r82) -~/3 exp{--Mz2/282} (27) 

where 63 = rr~(4rra 2) At (ma)2/12. 
If the particle were free to move and if it were to receive momentum M, then its 

change in velocity could be found from the momentum by dividing the momentum 
by the mass of the particle. Therefore, from Eq. (27), the probability that during A t the 
particle's velocity changes by B to B 4- dB as a result of the random collisions by the 
gas molecules is 

W(B) d B = d B (  &rkT  At)-8/2 I-- kT At M -  --~--z exp [ B ]Z/4 -~-  - - I  (28) 

where 

r = 3M/rn~4rra 2 (29) 

This result is to be compared to Chandrasekhar's postulate, Eq. (3). The only 
difference is that in Eq. (28) r appears in place of the (1//3) of Eq. (3). Proceeding as 
in Chandrasekhar's review article, the velocity distribution function for a B particle 
whose initial velocity is V0 is found to be 

1 t V -- Vo exp(--/3t)l z kT 1 ~a/~ 
(2kT/M-)(S/r-~ Z ex--~---2/3,)} {/[27r M r/3 {1 --exp(--2/3,)}] w(v, t) exp 

I 

(30) 
Thus, the particle will eventually attain a Maxwellian velocity distribution if 

r/3 = 1 (31) 
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Equation (31) is satisfied; Epstein's drag coefficient fl for specular reflections of the 
molecules from a sphere in free-molecule flow (14) is exactly the above result, Eq. (29), 
for l/T-. 

That this formalism has predicted the drag coefficient from information that is 
available when the sphere is at rest [provided that Eq. (31) is enforced] is not too 
surprising. The fluctuation-dissipation theorem (15-m predicts that properties charac- 
teristic of equilibrium fluctuations, such as the variance of Eq. (28), are related, simply, 
to the first-order term of the dissipative response of a thermodynamic system, such 
as the drag coefficient ft. Einstein's relation for the diffusion coefficient, D = k T /M f l ,  
is the classic example of how fluctuations (manifested in D) are related to dissipation 
(described by fl). Since both the fluctuation and the dissipation are caused by impacts 
of the fluid molecules on the particle, it is physically reasonable that the "coeff• 
are related. 

However, there are two interesting features of the above results. First, the fluctua- 
tion-dissipation relation appears here in a "reverse order" in the sense that usually 
the dissipative process is used to obtain information about the fluctuation. Thus, 
Einstein used Stokes' drag coefficient to determine the diffusion coefficient. Here, 
~- has been calculated and can be used to determine ft. It would be interesting to deter- 
mine if Stokes' drag coefficient could be derived in a similar manner. The 
second observation is that there is no a priori reason to assume ~-fl = 1. Nevertheless, 
in the fundamental analyses of Brownian motion by Einstein, aS) Langevin, (ag) 
Uhlenbeck and Ornstein, (2~ and by Chandrasekhar, (~) essentially this assumption 
has been made and justified by invoking the equipartition theorem. (z~.22) Above, we 
implicity invoked the equipartition theorem by requiring that the velocity distribution 
function, Eq. (30), becomes Maxwellian. But it is to be pointed out that here, both ~- 
and fl could be calculated and do in fact satisfy -rfl = 1. In the next section, a more 
complete analysis will be given. 

4. M O V I N G  PARTICLE--DIFFUSE REFLECTIONS 

In this section, the limitations of the previous section to specular reflections of the 
molecules and to a stationary B particle will be removed. The motion of the particle 
is described by Newton's law 

F ~- M dV/dt  (32) 

where F is the sum of the forces applied to the particle from molecular encounters. 
In attempting to describe F statistically, it becomes apparent that it is unnecessary to 
utilize Langevin's separation of F into two parts. Instead, a description is sought for 
the pdf of the total change in momentum of the particle, 

that occurs during At. In this section, the mean 
be calculated. 

N 

M A V  = ~ F j / I t  (33) 
j = l  

and variance of M / I V  will 
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Consider a spherical B particle whose velocity V is instantaneously in the Z '  
direction of an inertial coordinate system (X', Y', Z'). Choose a second coordinate 
system (X, Y Z) whose origin is at the center of the particle and whose axes are 
instantaneously parallel to the corresponding axes (X', Y', Z'). Finally, as in the pre- 
vious section, choose a third coordinate system (x, y, z) with origin at position 
(a, (9, qb) on the surface of  the sphere. 

The momentum transferred to the particle during At is, say, 

N 

M = Z Vs (34) 
j = l  

that is, the sum, over all molecules that hit the particle, of the momentum delivered 
by each. Now, Markov's method could be utilized to determine the pdf  for M but, 
recognizing the difficulty that arose in the simpler calculation of  the previous section, 
it seems advisable to invoke the central-limit theorem here from the outset. Conse- 
quently, Eq. (9) is expanded for small p and yields, when only the first two terms are 
retained 

C(p) = --io" N(p)  + (1/2) p.  N(pp) �9 p (35) 

where 

= f dq (q) p (36) (p) 

(pp) = f dq (q) pp (37) 

and in which it has been assumed that the pdf's, ~(q3), are the same for all j. 
Since N is the number of molecules that hit the particle during At and since (p)  

is the average momentum delivered by a single molecule, then N{p) is the (total) 
mean momentum delivered to the particle during At. This is just the drag force on the 
particle multiplied by the time interval. For a sphere which is a perfect thermal 
conductor, whose Knudsen number is large compared to unity, and whose temperature 
T~ is the same as the temperature of the environment T, Epstein's expression ~1~) yields 

N(p)  = --MfiV At [(1 +fTr/8) + 0(9,1/2V)] (38) 

where f i s  the fraction of the total number of molecules N that are reflected diffusely. 
As Epstein has shown, the numerical factor rr/8 changes slightly if different reflection 
models are used. 

We shall now slightly extend Epstein's analysis by calculating N(p)  for a spherical 
particle whose temperature T~ has not reached its equilibrium value T, the temperature 
of the gas. It will be assumed that the particle is a perfect thermal conductor so that 
T~ is independent of position on the sphere. In addition, it will be assumed that the 
diffusely reflected molecules are perfectly "accomodated" to the temperature of the 
sphere, a4) 

To calculate N(p)  and N~pp), consider first the incident molecules. If, with respect 
to (X', Y', Z'), the velocity of  a gas molecule is g' and the velocity of the B particle 
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is V, then with respect to the coordinate system (Jr', I7, Z) fixed to the particle, the 
velocity of a molecule is 

= ~ '  - -  V ( 3 9 )  

The velocity distribution function describing the incident molecules is 

f i  ~- (TJ , . )  ' / '  exp{--V~g'" ~'} (40) 

Substituting Eq. (39) into (40) and expanding for small ~,~/2V leads to 

fi = (yJTr) 3/2 exp{--yi~ �9 ~}[1 -- 2 y ~ -  V] (41) 

The number of molecules that during A t strike the area element at (a, O, @) is 

Ni = AA At f~2 d~ f ~  d~ u f ~  d~:~ (--sr (42) 

That is, 

N, = M[1 + (TW0 ~/~ V cos O] (43) 

where 

~ (1/4) ~i~i AA At (44) 

The effective number density of diffusely reflected molecules ~ can be determined 
as follows. The velocity distribution function of the diffusely reflected molecules is 

f ,a  = (~',./~r) 3/2 exp{--~,,.~. ~} (45) 

where 

7r = m /2 / cT ,  (46) 

Since a f rac t ionf  of the total number of molecules is reflected diffusely, the remaining 
specularly, then the total number of molecules that are reflected is 

Nr "= AA At I f  f(e~>0)dg n,.~:~f~a -b (1 -- f)f(e,>0)d~/~i~:,frs] (47) 

where the velocity distribution function for the specularly reflected molecules f ,s 
is obtained from f~ by replacing ~:z by (--~:z) in Eq. (41). Equating the results given by 
Eqs. (43) and (47) gives 

~, = g~(T/T~) ~/2 [1 -J- (Try, i) 1/2 Vcos Ol (48) 

The momentum delivered to area element AA during At is 

m AA At [Hi f(e,<o)dg (--~:.)g/~ -J- f(,.>o)dg ~:.g{(l -- f)nil., + fn.f.a}] (49) 

Evaluating these integrals and then integrating over the sphere gives 

N(p) = --M~V At [1 + f(rr/8)(T~/T)~/21 (50) 
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The difference between Eqs. (38) and (50) displays the effect on the drag force of the 
temperature of the particle. 

To calculate N(pp),  it is convenient to consider the specularly and diffusely 
reflected molecules separately. The molecules that are reflected specularly deliver 
to AA during At 

(1 -- f )  f (~  <0) dE n i ( ~ )  AA At (2m~:~) ~ l~kJ~ (51) 

Integrating this over the sphere yields 

[N(pp)]s = 2(1 -- f)(4/3) 7ra2m~i~ At kTfl (52) 

where i is the identity or metric tensor. To calculate the contributions from the 
molecules that are reflected diffusely, it is convenient to write 

[N(pp)]a ----- [N((p~ + p~)(p~ + p~.))]a 

= [NfpiP~)]a + 2[N(pipr)]a + [N(prPT)]a (53) 

The first and third terms on the right-hand side of Eq. (53) are evaluated as in Eq. (51); 
for example, one first evaluates 

f (e,>0) d~ f~r~, AA At m2~fra 

and then integrates over the sphere. The result is 

[N(pTp~)]a = f(4/3) ~ra~m~, At kTJ  (54) 

The correlation term is evaluated from 

(2/fNi)[f(,~<o) dg)C~i AA At (--~)rngfi] [f (,~>o)dgfffr AA At ~mgf~a] 

Summing this over the sphere gives 

2[N(p,p~)]a = 2f(~r/8)(TJT~) 1/2 (4/3) zca2m~,?, At kT~i (55) 

In summary, 

4 2 - -  [ 2 - - f + f - - ~ - +  N f p p )  = 3 7rarnniciAtkTii __" 2 f 8  (--~-i) ] T ~  1/~ (56) 

The limitations on these results should be mentioned. It was not demonstrated 
explicitly, but, to obtain Eq. (56), terms O(~,V 2) have been ignored. This is acceptable 
provided (M/m) >~ 1. Further, to satisfy the central limit theorem, 

(1/4) ~ At 4~ra 2 >~ 1 (57) 

However, in Eq. (57), At can not be chosen arbitrarily large because it was assumed 
that, during At, the mean velocity of the particle does not change significantly. Thus, 

At ~ ~-1 ~ 3M/(47ra2m~?) (58) 

822/213-r 
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Combining Eqs. (57) and (58), it is seen that it is required that 

(M/m)l/2 >~ 1 (59) 

Further, we mention again that Kn >~ 1. 
A few comments on the correlation term, Eq. (55), might be in order. In an 

earlier analysis this term was ignored based on the (faulty) reasoning that since the 
B particle "Maxwellianized" the diffusely reflecting molecules, the incoming molecule's 
"memory" would be erased. Thereby, it was concluded that there would be no corre- 
lation between the molecule's incident and reflected motions. When this assumption 
did not lead to equipartiti0n at equilibrium, it was thought that some phenomenon, 
such as an angular velocity of the particle, might have been overlooked. However, 
upon finding no phenomena that influenced the result, the above assumption was 
reexamined. It was finally realized that, of course, the molecules do "remember" 
where they hit on the surface of the particle. That  is, since more molecules are incident 
on the windward than on the leeward side of the particle, the diffusely reflected 
molecules are not uniformly distributed over the sphere. Thus, although the motions 
of  different molecules are independen t of one another (and therefore Markov's 
method is still applicable), the incoming and outgoing portions of the trajectories 
of each molecule are correlated. 

If  Eqs. (50) and (56) are substituted into Eq. (35), and the result into Eqs. (8) 
and (5), then the probability that during At the'change in velocity of a Brownian 
particle is between B and B § dB is found to be 

dB -- j B +/3*V A t  ~ 
 V(B)dB : exp I I (60) 

Here, 

/3* =/311 + f(~r/8)(T~/T)l/21 (61) 

and 

(T*) -1 --~/311 + (f/2){(T~/T) -- 1} + f(rU8)(T~/T)lt ~] (62) 

The subscript that was used to  distinguish the incident molecules has been dropped. 
Notice that if there are no diffusely reflected molecules (that is, if, as in the last section, 
f = 0) or for arbitrary f,  provided T~ = T, then Eqs. (61) and (62) yield 

~'*/3" = 1 (63) 

Some consequences of Eqs. (60)-(62) will be discussed in the next section. 

5. C O N S E Q U E N C E S  

Following Chandrasekhar's presentation, CT~ Eq. (60) can be used to obtain a 
Fokker-Planck equation for diffusely reflecting B particles: 

k T  V ~  ~ V + v . v ~ W = / 3 ,  Vv. W V + ~  v W (64) 
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Here, W(R, V, t; R 0 , u ,to) dR dV is the probability that the B particle is within 
the volume element dR dV about the phase point R, V at time t if the particle were 
known to be at R0, Vo at time to. The solution to Eq. (64) in velocity space, subject 
to the initial condition 

W(V, t) --~ 8(7 -- V0) as t --~ 0 

can be obtained simply by relabeling quantities in Chandrasekhar's solution (his 
equation 239). The result is 

W(V, t) : [- 2~rkT ,-3/2 t -- [ V -- Vo exp (--3"012 ~ 
MT*fl* {1 -- exp (--2fl*t)}] exp t(2kT/M'r*fl*){1 --  exp (-23"t))~ 

(65) 

Equation (65) is one of the main results of this analysis. Taking into account 
Eqs. (61) and (62), it is seen that, for t >~ fl-x, Eq. (65) predicts that the velocity 
distribution function for the B particle becomes Maxwellian regardless of  the number 
of diffusely reflected gas molecules, provided that the particle has come to its equili- 
brium temperature T~ = T. This result, that at equilibrium each degree of freedom 
of the B particle attains its equipartition value of energy kT/2, is a prediction rather 
than a postulate of the theory. It follows, more or less directly, from Newton's 
second law and the requirements of  the central limit theorem. Thus, equipartition is 
a consequence of the dynamics and randomness of the motion and not of  the specific 
molecular reflection mechanism under consideration. 

The solution to Eq. (64) in phase space can also be obtained from Chandrasekhar's 
analysis (his equation 286). For t >~ fl-1, it becomes 

w(v) Ro f2 
W(R, V, t >~, fl-1) __~ ( 4 ~ 3 / 2  exp --  l I R --  4D*t 1 (66) 

In Eq. (66), a diffusion coefficient has been identified as 

D* -- k T  1 = k T  1 + ~f[(T~,/T) -- 1] + xsfrr(TJT)I/~ (67) 
M r *  (3*) 3 M3*  [1 + f(zr/8)(T~/T) ~/21 

Two interesting features of Eq. (67) are the following. For T~ :# T andf:7~ 0, 
it is seen that the diffusion coefficient depends on the temperature of the particle. This 
is reasonable because, if the temperature of  the particle is, for example, greater than 
the temperature of the gas, then as the diffusely reflected molecules leave the particle's 
surface, they "kick back" harder than do specularly reflected molecules. Thereby, 
the diffusion coefficient would increase. 

A second prediction from Eq. (67) is that, for T~ = T, regardless off ,  Einstein's 
relation is regained: 

D* = kT/Mfl*  (68) 

In turn, this demonstrates that, to terms O(yV2), the fluctuation-dissipation theorem 
is also extendable to those circumstances for which some parameter, such as f ,  
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external to the thermodynamic bath, influences the response of the thermodynamic 
system to an external perturbation. Perhaps this is a rather surprising result. However, 
it is not just the fluctuations of the thermodynamic system which are important 
(for they do not contain any information about f ) ,  but it is the fluctuations of the 
influence of the thermodynamic system on the external perturbation. Further, though, 
notice that, for the nonequilibrium situation, T~ :?6 T, it would be necessary to know 
not only/3" to obtain D*, but a l s o f a n d  T~. 

Finally, it might be of interest to add a few qualitative comments about the 
dependence of the entropy of the system on the parameter f I f  Eq. (65) is used in 
Boltzmann's expression for the entropy (or H function) 12s~ 

h =  f d V W l o g W  (69) 

then an explicit dependence of the B particle's entropy on f and T~ can be obtained. 
This is an illustration of Prigogine's discussion (24) of the dependence of entropy on 
" internal  coordinates." From an information-theoretic interpretation of entropy, 
it is reasonable that the entropy of the system should depend on f when T~ :~ T. 
For  example, if T~ @ 0, then, introducing a diffusely reflecting B particle into a 
(T  = 0)-beam of molecules will randomize their motion. Thus, the entropy of  the 
gas molecules will increase as a function of how many gas molecules are reflected 
diffusely. A similar phenomenon, discussed by  Sommerfetd, C25) occurs when a speck 
of soot is introduced into a chamber filled with electromagnetic radiation. The soot 
can transform the radiati0nfield into blackbody radiation. In analogy to the above 
discussion, it can be said that, when the radiation field is not in equilibrium, t h en  
the entropy of the system depends on the amount of soot which is present. As a further 
extension of these concepts, if might be appropriate to determine the dependence of 
the entropy on the "coordinates" of Maxwell's familiar demon, i~8) 
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